Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP.

نویسندگان

  • T Riediger
  • H A Schmid
  • T Lutz
  • E Simon
چکیده

Amylin is secreted with insulin from the pancreas during and after food intake. One of the most potent actions of amylin in vivo is its anorectic effect, which is directly mediated by the area postrema (AP), a circumventricular organ lacking a functional blood-brain barrier. As we recently demonstrated, amylin also stimulates water intake most likely via its excitatory action on subfornical organ (SFO) neurons. Neurons investigated under equal conditions in an in vitro slice preparation of the rat AP were 15-fold more sensitive to amylin than SFO neurons. Amylin (10(-11)-10(-8) M) excited 48% of 94 AP neurons tested; the remaining cells were insensitive. The average threshold concentration of the excitatory response was 10(-10) M and, thus, close to physiological plasma concentrations. Coapplication of the amylin receptor antagonist AC-187 reduced amylin's excitatory effect. Amylin-mediated activation of AP neurons and antagonistic action of AC-187 were confirmed in vivo by c-fos studies. Peripherally applied amylin stimulated cGMP formation in AP and SFO neurons, as shown in immunohistochemical studies. This response was independent of nitric oxide (NO) formation in the AP, while coapplication of the NO synthase inhibitors N-monomethyl-L-arginine (100 mg/kg) and nitro-L-arginine methyl ester (50 mg/kg) blocked cGMP formation in the SFO. In contrast to the SFO, where NO-dependent cGMP formation seems to represent a general inhibitory transduction pathway, cGMP acts as an excitatory second messenger in the AP, since the membrane-permeable analog 8-bromo-cGMP stimulated 65% of all neurons tested (n = 17), including seven of nine amylin-sensitive neurons (77%). The results indicate that the anorectic effect of circulating amylin is based on its excitatory action on AP neurons, with cGMP acting as a second messenger.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis.

Amylin is a peptide hormone that is cosecreted with insulin from the pancreas during and after food intake. Peripherally injected amylin potently inhibits feeding by acting on the area postrema (AP), a circumventricular organ lacking a functional blood-brain barrier. We recently demonstrated that AP neurons are excited by a near physiological concentration of amylin. However, the subsequent neu...

متن کامل

CALL FOR PAPERS Integrative and Translational Physiology: Integrative Aspects of Energy Homeostasis and Metabolic Diseases Involvement of the extracellular signal-regulated kinase 1/2 signaling pathway in amylin’s eating inhibitory effect

Potes CS, Boyle CN, Wookey PJ, Riediger T, Lutz TA. Involvement of the extracellular signal-regulated kinase 1/2 signaling pathway in amylin’s eating inhibitory effect. Am J Physiol Regul Integr Comp Physiol 302: R340–R351, 2012. First published November 30, 2011; doi:10.1152/ajpregu.00380.2011.—Peripheral amylin inhibits eating via the area postrema (AP). Because amylin activates the extracell...

متن کامل

Involvement of the extracellular signal-regulated kinase 1/2 signaling pathway in amylin's eating inhibitory effect.

Peripheral amylin inhibits eating via the area postrema (AP). Because amylin activates the extracellular-signal regulated kinase 1/2 (ERK) pathway in some tissues, and because ERK1/2 phosphorylation (pERK) leads to acute neuronal responses, we postulated that it may be involved in amylin's eating inhibitory effect. Amylin-induced ERK phosphorylation (pERK) was investigated by immunohistochemist...

متن کامل

Actions of amylin on subfornical organ neurons and on drinking behavior in rats.

Amylin, a peptide hormone secreted by pancreatic β-cells after food intake, contributes to metabolic control by regulating nutrient influx into the blood, whereas insulin promotes nutrient efflux and storage. We now report that amylin activates neurons in the subfornical organ (SFO), a structure in which the lack of a functional blood-brain barrier and the presence of a high density of amylin r...

متن کامل

Amylin and GLP-1 target different populations of area postrema neurons that are both modulated by nutrient stimuli.

The area postrema mediates the hypophagic effect of the pancreatic hormone amylin and is also sensitive to glucagon-like peptide 1 (GLP-1). Protein seems to modulate amylin responsiveness because amylin seems to produce a stronger hypophagic effect and a stronger c-Fos expression when protein is absent from the diet. Accordingly, amylin induces a stronger c-Fos expression in the AP when injecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 281 6  شماره 

صفحات  -

تاریخ انتشار 2001